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A b s t r a c t

Introduction: Expression of haematopoietic stem and progenitor cells occurs as a result of an inflammatory reaction caused by 
a damaged organ. Patients undergoing coronary artery bypass surgery (CABG) using cardiopulmonary bypass (CPB) are exposed to 
an inflammatory reaction, which may be a trigger in the mobilization of regenerative cells.

Aim: To assess the impact of CPB on stem and progenitor cells mobilization in patients scheduled for CABG.
Material and methods: Twenty patients with stable coronary disease, who were scheduled for CABG, were included in the study. 

Peripheral blood samples were collected perioperatively: 2 h before surgery, before CPB, at CPB weaning, 24 h postoperatively, and 
on the 6th postoperative day. Analyses of immune-labelled cells were carried out on an ImageStream (IS) system.

Results: The following cell populations were identified during cardiac surgery: haematopoietic stem cells (HSC), mesenchymal 
cells (MSC), endothelial progenitors (EPC), and very small embryonic-like cells (VSEL). The profile of cell mobilization coincides with 
the perioperative inflammatory response. Mobilization of stem and progenitor cells induced by CPB did not occur in any of the iso-
lated cell lines (p > 0.05). The expression profile of stem and progenitor cells was related with the inflammatory reaction associated 
with traumatic stress in all cell lines. Type 2 diabetes is a disease that is hampering the trend of MSC mobilization.

Conclusions: Mobilization of haematopoietic stem and progenitor cells was not related with CPB. The inflammatory reaction 
was associated with perioperative trauma. Cell release was inhibited in patients with diabetes.
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S u m m a r y

Expression of haematopoietic stem and progenitor cells in patients scheduled for coronary artery bypass surgery (CABG) 
was not related by cardiopulmonary bypass. The inflammatory reaction was associated with preoperative trauma and diabe-
tes is thought to be a down-regulating factor for mesenchymal stem cells in that response.

Introduction
Currently, the term “stem cell” is understood as cells 

characterized by the same ability of self-renewal, asym-
metric division, and the possibility to differentiate into 
different types of mature cells [1]. In humans about  
260 types of cells have been distinguished. Based on 
their phenotypic features about 30 different subpopula-
tions of stem and progenitor cells have been identified 
among them [2]. In cellular therapy using stem cells in 
the field of cardiology and cardiac surgery, the greatest 

experience exists in studies using an unselected popula-
tion of mononuclear bone marrow cells (both haemato-
poietic and mesenchymal lineage) [3]. Expression of hae-
matopoietic stem and progenitor cells occurs as a result 
of an inflammatory reaction caused by a damaged organ 
[1]. Patients undergoing coronary artery bypass surgery 
are exposed to an inflammatory reaction, which may be 
a  factor in the mobilization of progenitor cells [4]. The 
extracorporeal circulation is one of the forms of the gen-
eralized inflammatory reaction. It is used, inter alia, to 

mailto:adam.kowalowka@orange.pl


Adam R. Kowalówka et al. Stem cells mobilization by cardiopulmonary bypass after coronary artery bypass grafting

451Advances in Interventional Cardiology 2022; 18, 4 (70)

perform coronary artery bypass surgery.  This condition 
observed in cardiac surgery may result from many pro-
cesses such as blood contact with a foreign, non-physi-
ological surface of the device, tissue ischaemia, reperfu-
sion injury, and endotoxaemia. All these processes carry 
a  humoral and cellular response that accompanies an 
inflammatory reaction [5]. Intraoperative pharmacother-
apy, patient temperature during surgery, type of oxygen-
ator, drains, or fluids that fill the oxygenator system have 
a significant impact on the size, duration, and severity of 
the inflammatory reaction [6]. The dynamics and intensi-
ty of this process depend significantly on the technique 
of extracorporeal circulation [5]. 

Aim
In our study we aimed to determine the impact of 

the stress reaction during cardiopulmonary bypass (CPB) 
on mobilization of stem and progenitor cells in patients 
scheduled for a  coronary artery bypass surgery (CABG) 
procedure, and its corelation with clinical status. 

Material and methods
The final study group comprised of 20 patients sched-

uled for elective CABG recruited in the Department of 
Cardiac Surgery at the Medical University of Silesia in 
Katowice. The study protocol conforms to the ethical 
Declaration of Helsinki guidelines, and it was approved 
by the Medical University of Silesia Ethics Committee 
(KNW/0022/KB1/65/10). All patients signed a written in-
formed consent form. Inclusion criteria where: age 18–75 
and stabile multivessel coronary artery disease. Exclusion 
criteria where as follows: myocardial infarction up to  
3 months before cardiac surgery, previous cardiac revas-
cularization, any other concomitant cardiac surgery pro-
cedure, kidney failure, cancer, or autoimmune disease. The 
extracorporeal circulation was performed according to 
the normovolaemic haemodilution protocol. The patients 
enrolled in the study received 10 ml EDTA blood at 5 time  
points: (1) 2 h before the operation begins; (2) intraoper-
atively before connecting the extracorporeal circulation; 

(3) intraoperatively after disconnection of extracorporeal 
circulation; (4) 24 h after cardiac surgery; and (5) 6 days 
after cardiac surgery. 

The next step was cell identification. Then the blood 
was lysed (BD lysing buffer, BD Biosciences, San Jose, 
CA) for 15 min at room temperature, followed by a sus-
pension of cells rinsed twice in PBS. After lysis of eryth-
rocytes and enzymatic digestion of tissues, the cells 
were labelled with monoclonal antibodies: linear mark-
ers (CD2 clone RPA-2.10, CD3 clone UCHT1, CD14 clone 
M5E2, CD66b clone G10F5, CD24 clone ML5, CD56 clone 
NCAM16.2, CD16 clone 3G8, CD19 clone HIB19, CD235a 
clone GA-R2) FITC conjugated, CD45 (clone HI30) coupled 
to PE, CXCR4 (clone 12G5), CD34 (clone 581), and CD133 
(CD133/1) APC-coupled (BD Pharmingen, MiltenyBio-
tec), for 30 min on ice. Populations of CXCR4+ lin-CD45-,  
CD34+ lin-CD45-, and CD133+ lin-CD45- were sorted 
from the nuclear nucleus suspension by intravital multi-
parameter sterile cell sorting using a sorting cytometer. 
Immunophenotyping was assessed using a flow cytom-
eter (BD Biosciences, San Jose, CA; Cell Quest software). 
The isolation method based on cell size (Figure 1 A) and 
expression of surface (Figure 1 B) markers was used.

Analyses of immune-labelled cells were carried out 
on an Image Stream (IS) system according to the guide-
lines [7]. After cell lysis, fixation, and permeabilization, 
the cells were stained with the following antibodies: PE 
anti-Oct-4 (Chemicon, USA) secondary antibody (BioLeg-
end, USA), anti-CD45 (FITC; clone 30-F11), and antibodies 
against markers: ropes, CD34, CD45, and CXCR4. Granu-
locytes and erythrocytes were stained for the presence 
of CD66b markers (FITC, clone G10F5) and 235a (FITC, 
clone GA-R2). Cell nuclei for visualization were stained 
with a 10 mM Hoechst 33342 dye solution for 10 min  
before analysis. Analysis of samples was performed us-
ing ImageStream. 

In the next stage of the analysis, the number of cells 
of individual lines was found at defined time points rel-
ative to the ‘0’ point, and the lines were divided into 
groups; thanks to this, we have an image of how the 
number (‘mobilization’) of cells changed over time rela-

Figure 1. FACS stem cell assay based on size (A) and based on the presence of surface markers (B)
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Table I. Patients’ characteristics (n = 20, male 17, 
female 3)

Parameter Value

Age [years] 62 ±5.5

Hypertension, n (%) 16 (80)

Diabetes type 2, n (%) 7 (35)

Hyperlipidemia, n (%) 10 (50)

Smoking, n (%) 13 (65)

Obesity, n (%) 8 (40)

Mean XCT [min] 25.2 ±6.8

Mean CPB [min] 54 ±12.1

Mean postoperative Troponin-T hs [ng/ml] 0.23 ±0.1

Pharmacotherapy, n (%):

Statins 18 (90)

Aspirin 15 (75)

ACE-inhibitor 11 (55)

Figure 2. ImageStream dentification of HSC (A), MSC (B), EPC (C), VSEL (D)

tive to the ‘0’ point. Spearman correlation was used to 
determine the correlation coefficient and its statistical 
significance system (Beckton Dickinson, USA).

The distribution of most variables differed signifi-
cantly from the normal distribution (p < 0.05 in the Sha-
piro-Wilk test). Differences between groups meeting the 
normal distribution criteria were examined using a one-
way analysis of variance for repeated measurements, 
i.e. an ANOVA test for dependent groups. In contrast, 
variables that do not meet the above criteria were used 
to analyse the variance of repeated measurements for 

ranks with a  post-hoc analysis of the Dunn test. Dif-
ferences and dependencies for which the p-value was  
< 0.05 were considered statistically significant. 

Results
Twenty patients (17 males) with stabile coronary ar-

tery disease were included in the study group. All patients 
had preserved left ventricle fraction without any other 
indications for cardiac surgery. In all patients CPB was 
performed where X-clamp time, CPB time, troponin T (hs) 
level, and haemodilution (pre and post haematocrit level) 
were not significant. Patients’ characteristics are present-
ed in Table I. The following population of stem cells in the 
peripheral blood of patients was identified by isolation 
based on cell size and expression of surface markers us-
ing flow cytometry with the ImageStream system: HSC 
(Figure 2 A), MSC (Figure 2 B), EPCs (Figure 2 C), and VSEL 
(Figure 2 D). Each stem cell population was identified 
based on the expression of lineage markers (or lack of) 
characteristic for the population of system-labelled triplet 
antibodies (Table II). In this method, more than one sub-
population was generated in each cell population. Sub-
populations were determined as a result of analysing data 
provided by flow cytometry and the ImageStream system.

The kinetic release in both immature EPC subpopu-
lations and their mature forms were before connecting 
the extracorporeal circulation and decreased, until it 
was completely stopped 24 h after cardiac surgery. On 
the 6th day, their number falls below the baseline values  
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(p > 0.05) (Figure 3 A). In both subpopulations of HSC1 
and HSC2, the same release profile is seen (p > 0.05) (Fig-
ure 3 B). Depending on the degree of differentiation, the 
release kinetics of MSC have the same profile as EPC or 
HSC. Unselected populations undergo a release process 
before the lung-heart apparatus is connected, and extra-
corporeal circulation does not intensify this reaction (p > 
0.05) (Figure 3 C).

VSELS are represented by 2 cell phenotypes (VSEL1 
and VSEL2), and the mobilization process did not meet 
the level of significance either (p > 0.05) (Figure 3 D).

The release of human stem and progenitor cells into 
the blood serum triggered by CPB did not occur in any of 
the 4 tested populations cells lines. However, some re-

lease process takes place when the cardiac surgery has 
already begun, but the patient has not yet been connect-
ed to the CPB. This may be due to the patient’s strong 
stress response before surgery and trauma associated 
with the tissue and bone continuity disruption.

Table II. Linear markers of stem and progenitor cells

HSC VSEL MSC EPC

Lin– Lin- Stro-1+ KDR+

CD45+ CD45– CD45– CD31+

CD34+ CD34+ CD34– CD34+/–

CD133+ CD133+ CD105+ CD133+

CD90+

Figure 3. Mobilization of EPC (A), HSC (B), MSC (C), and VSEL (D) were not significant (p > 0.05)
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Figure 4. Diabetes vs. no-diabetes in cell mobilization
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At the last stage, the distribution number of cells of 
individual lines was analysed, statistically testing the dif-
ferences in the medians of the number of cells in the sub-
groups with the following clinical data of patients: arterial 
hypertension vs. no hypertension, dyslipidaemia vs. no dys-

lipidaemia, smokers vs. non-smokers, and coronary heart 
disease burden (data not shown). In all the above-men-
tioned clinical relationships, we found no statistically sig-
nificant differences. Only patients with type 2 diabetes vs. 
no diabetes presented lower cell release (Figure 4). A lower 
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Figure 4. Cont.

release trend was significant in MSC (MSC3, p = 0.01) and 
approached the level of significance in EPC (EPC3, p = 0.05).

Finally, correlations between two selected cell line 
parameters were evaluated and combined with variable 
clinical data such as age and troponin showing the lack 

of correlation between individual populations (p > 0.05, 
data not shown). No significance in troponin level con-
firmed the lack of perioperative myocardial infarctions 
during cardiac surgery, which could overlap inflammatory 
processes.
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In the demographic data, we only found a negative 
correlation with age, occurring in the EPC population 
(EPC1, p = 0.04) (EPC2, p = 0.02). 

Discussion
Our study involved patients scheduled for an elective 

CABG procedure identified in peripheral blood following 
stem and progenitor cell lines EPC, HSC, MSC, and VSEL 
by superficial linage markers in IS. Mobilization of stem 
and progenitor cells induced by CPB did not occur in any 
of the isolated cell lines (p > 0.05). The profile of cell re-
lease seems to coincide with the perioperative inflam-
matory response. The expression profile of stem and pro-
genitor cells seems to be related with the inflammatory 
reaction associated with traumatic stress in all cell lines. 
According to age, negative correlation was documented 
in EPC. When clinical comorbidities were analysed, type 2  
diabetes mellitus was to down-regulate the trend of MSC 
mobilization.

Endothelial progenitor cells were initially consid-
ered as a  group of cells mobilized from the bone mar-
row, which participate in the generation and repair of 
the vascular endothelium [8]. EPCs have recently been 
regarded as a heterogeneous population of cells in dif-
ferent stages of maturation, with different origins and 
several residing sites, such as the spleen, vascular endo-
thelium, and adventitia [9]. Hill et al. found EPCs in pe-
ripheral blood when developing a colony-forming assay 
based on mononuclear cell culture on fibronectin-coated 
plates. After coronary artery surgery EPC mobilization 
was documented on-pump and off-pump [10]. Also, af-
ter heart valve surgery expression of previous mentioned 
cells were identified [11]. Trying to answer the question 
of what the trigger of this mobilization was, our study 
revealed CPB as a  nonimportant stress trigger for EPC 
expression. Our second finding confirms the findings of 
Altabas et al., who studied the ability of EPCs, and they 
concluded that it depends on their number and function-
ality, which was impaired by diabetes mellitus [12]. Age 
is undoubtedly the next factor with which the number of 
EPCs decreases [13–15]. Our research revealed negative 
correlation with age in 2 subpopulations of EPCs. 

Peripheral blood is not the classical source of hae-
matopoietic stem cells in the case of bone marrow [16]. 
Although peripheral blood is a preferable source of trans-
plantation HSCs, because it is safe, and the desired cell 
number can be achieved easily [17], mobilization of HSC 
after on-pump CABG did not occur in the presented 
study. However, this study was the first to investigate the 
relationship between CPB and stem release. 

MSCs have a homing ability, meaning that they can 
migrate into injured sites, and they possess the capaci-
ty to differentiate into local components of injured sites. 
Their pluripotency and paracrine ability to extract chemo-
kines, cytokines, and growth factors that help in tissue 

regeneration make MSCs the most promising regenera-
tion cells nowadays [18]. The classic source of MSC is still 
bone marrow, but adipose tissue is easy and safe, and 
almost 100% of allogenic cells derived from adipose tis-
sue are viable [19]. The presence of these cells has been 
confirmed in almost every human organ [20–22]. A few 
years ago there was still controversy about whether MSC 
can be detected in the blood circulation in humans, and 
Zvaifler et al. tried to isolate stem cells from sterile blood 
packages obtained from blood transfusion [23]. Today 
we know that peripheral blood is a safe, available, and 
minimally invasive source for isolation of MSCs [24–27]. 
Cardiopulmonary bypass as an inflammatory reaction re-
leasing MSCs into peripheral blood was not confirmed in 
our study. But we confirmed the findings Tsukada et al. 
[28] of lower MSC levels in diabetes mellitus vs. non-dia-
betic patients. Adiponectin levels seem to play an inter-
esting role in that mechanism [29]. Lower MSC levels in 
patients with diabetes mellitus were also documented in 
adipose tissue [30]. Diabetes makes changes in angio-
genesis, modulates pro-inflammatory cytokine secretion, 
increases oxidative stress markers, impairs cellular differ-
entiation, and decreases proliferation [31].

With the increasing number of heart attacks and re-
lated heart failure, researchers have been searching for 
stem cells in the heart [32, 33]. VSELs were addressed to 
help patients after myocardial infarct [33–35], although 
the low circulating level and lack of significant mobili-
zation triggered by CPB presented in our study was un-
doubtedly the reason for their wider use.  

The surgery itself is a significant injury for the patient. 
It is known that the greater the interference in our body, 
the greater the damage and stress and the stronger the 
catabolic response etc. Looking at all stages of cardiac 
surgery, we can distinguish several inflammatory factors 
that may underlie the genesis of mobilization at various 
stages of the operation. Changing the internal or external 
environment starts a stress reaction by stressors caused 
by surgery, called “operational stress” [36]. It occurs due 
to preoperative factors related to the patient (age, sex), 
operational (fear, anxiety, drugs, surgeon, extent of tissue 
damage, hypothermia), and postoperative (pain, infec-
tions, hypoxia, immobilization) to modify the neuroendo-
crine response to trauma [37]. We know that stress can 
modify the inflammatory response by modulating the 
immune cell’s economy [38]. The next component of the 
proinflammatory factor is the surgeon’s activity related 
with the disruption of tissue continuity. The skin incision 
and subsequent opening of the chest causes stimulation 
of the nociceptors located in the skin, subcutaneous tis-
sue, periosteum, and muscle. This is accompanied by the 
release of inflammation reaction mediators such as cyto-
kines, leukotrienes, TNF, histamines, and prostaglandins. 
The size of this response is proportional to the extent 
of the tissue injury [37]. Mobilization triggered by CPB 
does not exist. The release profile of stem and progenitor 
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cells corresponds with the leucocyte profile released by 
trauma (psychological and physical), and CPB alone did 
not intensify this process, even thought the haemodilu-
tion effect, which occurs during on-pump operation, was 
excluded.

The hypothesis made in the study that the extracor-
poreal circulation as a form of inflammatory reaction is 
a factor that triggers the mobilization of stem cells from 
the peripheral blood of the patient was not confirmed in 
the examined material. 
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